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Classical cellular convection with a spatial heat source 

By PAULINE M. WATSON 
6, St James’s Square, London, S.W. 1 

(Received 4 May 1967) 

This paper considers the problem of the stability of an infinite horizontal layer 
of a viscous fluid which loses heat throughout its volume a t  a constant rate. The 
variation of the critical Rayleigh number, Rcrit, and the cell aspect ratio, a, 
with the rate of heat loss, is calculated with two sets of boundary conditions 
corresponding to two free and two rigid boundaries. In  both cases we find that, 
as the rate of heat loss increases, Rcrlt decreases, showing that the layer becomes 
more unstable, and a increases, showing that the cells become narrower. We also 
consider the possibility that a double layer of cells is formed for large values of 
the rate of heat loss, by the stable layer a t  the top, and find that this does not 
occur while the temperature of the upper surface of the layer is less than that of 
the lower. 

1. Introduction 
Ray & Scorer (1963, chapter 4) considered the problem of the stability of a 

horizontal layer of a viscous fluid which loses heat throughout its volume while 
the temperatures of the bounding surfaces remain fixed. Two sets of boundary 
conditions were used, one in which both boundaries were rigid, and another in 
which both boundaries were assumed to be free surfaces. The heat loss was 
assumed in one case to be constant throughout the volume, and in another case 
to be periodic in z. When the heat loss was constant, which is the only case con- 
sidered here, a non-dimensional number Q was used to express the volume heat 
loss as a multiple of the mean heat flux, and the critical Rayleigh number and 
associated value of the cell aspect ratio a were calculated for various values of Q. 
It was found that in each case the critical Rayleigh number decreased with 
increasing Q,  but that the aspect ratio a increased with increasing Q when the 
boundaries were free, and decreased with increasing Q when the boundaries 
were rigid. It was not clear why the boundary conditions should affect the results 
in such a way, so the work was re-examined and found to contain algebraic 
errors. These have now been corrected and the results are given here. 

The determination of critical Rayleigh numbers for this problem when the 
boundaries are rigid was subsequently carried out by Sparrow, Goldstein & 
Jonsson (1964), using a power series expansion, and by Debler (1965), using the 
analogy between this problem and that of the stability of flow between rotating 
cylinders (Chandrasekhar 1961). The case of the stability of a layer with two 
free boundaries does not appear to have been treated, although it is more likely 
to be of importance in the study of the stability of layers of air in the atmosphere. 
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Here we have calculated critical values of R and a €or various values o i  Q in 
both these problems and compared the results. We were also interested in the 
possibility that a two-layer flow pattern might be produced as the upper layers 
become more stable because they are eventually driven by the viscous drag of 
the motion in the unstable lower layers. It is shown that the motion remains in 
the form of a single cell, at  least SO long as the temperature of the upper surface 
is less than that of the lower. The method of solution of the equations is similar 
to that used by Chandrasekhar (1961) to solve the problem of flow between 
rotating cylinders. 

2. Development of the equations 
We consider a layer of viscous fluid of infinite horizontal extent and of finite 

depth h, A co-ordinate system Oxyz is chosen, having Oz vertical and Ox, Oy in 
a horizontal plane. The lower and upper boundaries of the layer, at z = 0, h, are 
maintained at  the constant temperatures To and TI respectively, and throughout 
the volume of the fluid heat is lost at  a constant rate. Since the equations contain 
only gradients of temperature this heat loss may be thought of as heat absorption 
by a layer becoming steadily warmer. 

The governing equations of fluid flow, heat conduction, and mass conservation 
are 

2 Dv 
Dt 

p- = g p - v p + p v  v, 

*+pdivv = 0, 
Dt 

( 2 . 2 )  

where p is the density of the fluid; v = (u, v, 20) is the fluid velocity; g = ( O , O ,  - g) 
is gravity; p is the pressure in the fluid; ,LL the dynamic viscosity; T the absolute 
temperature; k the thermal conductivity; and q the heat lost within the fluid per 
unit volume per unit time. 

With a constant coefficient of expansion a, we have 

P = Po(l-a(T-To)), (2.4) 

where po and To are constants. 
In  the equilibrium state heat transport is by conduction alone and there are 

no velocities in the fluid. The solution of equations (2.1)-(2.4) is easily obtained 
in this case, and, if we make the assumption that the mean state after the onset 
of slow convection is the same as the equilibrium state, we have for the mean 
state variables (denoted by an overbar) 

P = 0, (2.5) 

P = gp, (2.6) 

V2T= - 4  - 
k' (2.7) 

p = p o ( l  -a(T- To)). (2.8) 
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The mean temperature Fis assumed to depend only on z, so we can integrate 

(2.9) 

= To, T,at 

AT q 
2k h 

where AT = To - Tl > 0, since this is the solution which gives 
z = 0, h. Writing 

wherep', T', p' and v are small perturbations with respect to which the equations 
are linearized using the Boussinesq approximation, we obtain 

(2.7) to give 
T = - (9 - hz) - - z + T,, 

p = ji+p', T = T+T', p = p i p ' ,  v = V, (2.10) 

-=  av --Vpf+vV2v+-, 1 gP' 
at Po Po 

(2.11) 

divv = 0, (2.12) 

(2.13) 

/I' = -poaT', (2.14) 

where v is the kinematic viscosity. These equations are similar to those obtained 
by Pellew & Southwell (1940) except that in this case dT/dz is not constant. 

Eliminating p' and T we have 
aV 1 
- = - gaT' - - Vp' + vV%, 
at Po 

(2.15) 

(2.16) 

leading to [: - vV2] V2w = gaV:T', (2.17) 

a2 a2  
v2 - -+- 

- ax2 ay2 where 

and finally to an equation for w alone, 

v;w. (2.18) 

We now assume a separable solution of the form 

w(2, Y ,  2; t )  = w(z ) f ( x ,  Y) cut, 
a2 

(2.19) 

where 

in which a is the aspect ratio of the cells (Pellew & Southwell 1940). Hence 

V ; f h  Y) fpf(",Y) = 0, 

(2.20) 
a2 
h2 

v2w = --w. 1 

Setting 

we have 

26 

(2.21) 

Fluid Mech. 32 
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so that (2.18) becomes 

= gct ["z"k - ( (ZC- l ) -~]$w(z) .  (2.22) 

On the usual assumption that the critical temperature gradient corresponds to 

i.e. ( 0 2 -  a 2 ) 3 ~  = - ( R  + Q( 1 - 2(5))a2w, (2.23) 

where R = -  gcth3AT, the Rayleigh number, 
kV 

4h3 R x heat lost and Q = -  9"qh5 =R-=--- 
2k2v 3khAT 2 x mean heat flux' 

mean heat flux = + (heat flux in at bottom + heat flux out a t  top) 
= constant. 

Q gives the heat loss as a multiple of the mean heat flux, the factor 2 being 
introduced for convenience. Equation (2.23) is the same as that obtained by 
Ray & Scorer. 

3. The problem of a layer with free boundaries 

With fixed, stress-free boundaries at c = 0 , l  we have 

(i) Boundary conditions 

whence 

i.e. D2w = 0 ((5 = 0 , l ) .  (3.2) 
The thermal boundary condition 
pressed in terms of w by means of (2.18), giving 

= constant implies T' = 0, and can be ex- 

[$- ,vq V2W = 0 (g = 0 , l ) ;  

i.e. V4w = 0 or D4w = 0 ((5= 0 , l ) .  (3.3) 
From the governing equation and (3.1)-(3.3) we thus obtain 

(5  = 0, l), D ~ w  = D ~ w  = ... = DZnw = 0 

w = D2w = D ~ w  = ... = D 2 n ~  = 0 and so (6 = 0 , l ) .  (3.4) 

(ii) Xolution of the equation 

We have to solve (2.23) with the boundary conditions (3.4). Writing 

@ = a2(R+&)w, (3.5) 
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equation (2.23) becomes ( 0 2  - a 2 ) 3 ~  = - (1 + Cg) $, (3.6) 

where 

m - 
We assume a solution W =  C r m w m ,  

n=l 

m 

$ =  X rrn@rn> 
%=l 

where Tm is a constant, and $,, w, satisfy (3.6) and the boundary conditions 
(3.4) for each m. If Q = 0 (C = 0)  equation (3.6) for @,, w, and boundary condi- 
tions (3.4) are satisfied by @, = sin mng, w, = sin mz-(mW + so we may 
usefully set @m = sinrnn-5 in equation (3.6), giving 

( 0 2  - a2)3 w, = - (1 + Cg) sin mng, (3.9) 

which is easily integrated to give 

w, = (mZn2+a2)3 [(Arn + B,g+ Cmgz) sinh a[+ (D, + E,C+ Fmg2) cosh a< 

6mnC 
m2n2 + a2 

+ ( 1 + Cg) sin mn5 + 
Applying the boundary conditions (3.4) to wm we find that the constants A,, . . ., F, 
are mnC ($""2:; 9a2 (m2n2 + a2) cash a 1 - ( -  l)mcosha 

+ 2 sinh a I[ sinha 
A ,  = 

a2 sinh a 
(m2n2 + a2) 6a2 

[cosh a - ( - 1)7n]), 
4 + m2n2 + a2 +(-l), 

mnC 
4a2 sinh a 

cm = (m2n2+a2)(cosha- ( -  l),), 

Om= - 6mnC 
m%2 + (1.2 ' 

(1 - ( - 1)"cosha) 

(cash u - ( - l),) (m2n2 + 9a2) 
+ 2a 

(3.11) 

Substituting from (3.7) and (3.8) into (3.5) we have 

5 r h (  (m2n2 + a2)3sin mn-5 - a2(R + Q )  (A,  + B,g+ C,C2) sinh a5 

6mnc cosmn~] )  = 0, (3.12) + (D, + Emg+ F,g2) cosh ag+ (1 + Cg) sinmng+ 

m = l  

m2n2 + a2 
26-2 
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where 

Multiplying by sin nn-5 and integrating from 0 to 1 gives a set of homogeneous 
linear equations in the FA, and for a non-trivial solution the determinant of 
coefficients must vanish, giving rise to the secular equation 

[[i(n2n2+ a2)3cYmn - &(R + &) (m: n)( ( = 0, (3.13) 

This is the equation obtained by Ray & Scorer, but an algebraic error was 
made in the calculation of the constants A ,  and Em in (3.11). 

4. The problem of a layer with rigid boundaries 

With fixed, rigid boundaries at c = 0 , l  we have 

(i) Boundary conditions 

u = v = w = 0 ( 6 =  0, l), 

i.e. Bw = 0 (6 = 0 , l ) .  

As in 9 3 (i) the thermal boundary condition is 

v4w = 0 ( 5  = 0, l), 
which we write in the form 

(D2-a2)2w = 0 (5 = 0 , l ) .  (4.3) 

So fmally w = Dw = (D2-a2)2w = 0 (c  = 0 , l ) .  (4.4) 

(ii) Solution of the equation 

(D2-a2)2w = $ (4.5) 

(Dz-&)$ = -(R+&(1-2c))a2w. (4.6) 

In  this case we set 

and (2.23) becomes 

As in $3 we assume a solution 
gl 

w = Z r m w m ,  
m = l  

m 

(4.7) 

where rm is a constant and $m,w, satisfy equation (4.5) and the boundary 
conditions (4.4) for each m. In  this case 

sin mn wm = -__- 
m2n2 + a2 +m = sinmn, 

satisfy (4.5) and the boundary conditions (4.4) for all &, and we again set 
$m = sinmnc, equation (4.5) becoming 

( 0 2  - wm = sin mnc, (4.9) 
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which integrates to give 

wm = ( (A ,  + B,(5) sinh a<+ (C, + Dm (5) cosh a5+ sin mn5 
(m2n2 + a2)2 

Here we have only four arbitrary constants since (4.9) is a fourth-order equation. 
These constants are obtained from the boundary conditions 

W ,  = Dw, = 0 ((5 = 0, l), 

the third condition, (D2-a2)2w, = 0 (y = 0, l), 

being satisfied automatically because of (4.9). The values of the constants 
A,, . . . , Dm are 

mn 
A ,  = (( - sinh a - a}, 

a2 - sinh2 a 

(4.11) 
mn 

a2 - sinh2 a B, = (( - l)"+l(acosha-sinha) +a-sinhacosha}, 

c, = 0, 

- mn 
a2 - sinh2 a Dm = (( - l),+l a - sinh a] sinh a. J 

Substituting the series for $ and w into equation (4.6) we have 

m 
r k { ( m w +  a2)ssin mn(5- a2(R + &( 1 - 25)) ( (A ,  +B,Y) sinh a5 

m = l  
+Dmgcosha(5+sinmn(5}} = 0, (4.12) 

where 

The secular equation obtained from this in the manner described in (3) is 

l/+(n2n2+a2)3Smn- (m:n)\l = 0, (4.13) 

(m:n) = (m2n2+a2)2wma2(R+&(l-2(5)) sinnncd(5. (4.14) s: where 

In this case the equation (4.13) and constants (4.11) are the same as those obtained 
by Ray & Scorer, but in their work an error was made in calculating the 
approximations to the secular equation described in $ (5) .  

5. Calculation of an approximate solution 
An approximation to the solution can be obtained by setting the determinant 

formed by the elements in the first n rows and columns of the secular determinant 
equal to  zero, successive approximations being obtained as n increases. Con- 
vergence is good for small &, but becomes poorer as & increases. This procedure 
is equivalent to taking the first n terms in the expansions for $ and w. The 
calculation is done for various values of Q, in each case the value of R which 
corresponds to a particular value of a being found by solving an algebraic 
equation. The minimum value of R with respect to a is then calculated for each Q .  
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Sparrow et al. (1964) calculated the critical Rayleigh number subject to 
the condition N, = constant, where N, is equivalent to QlR in the present 
work. This gives the same value for Rcrit as our calculation since we see from 

FIGURE 1. The surface R = f(Q,a) cut by planes Q = const. and Q = uR. The point P 
represents R,,,. 

figure 1 that the surface R = f ( a ,  Q )  is such that the curve formed by the inter- 
section of the surface with the plane Q = constant has a unique minimum, 
Rcrit, and that the plane Q = aR through this minimum point does not meet 
the surface again for 0 < R < Rcrit, so that RCrlt is a minimum in this plane also. 

The approximate solutions obtained from the first few terms of equations 
(2.7), (4.7) can be used to discover whether the motion within the layer is in the 
form of a single or a double cell, When the temperature profile is parabolic and 
there is a temperature minimum within the fluid, stable fluid is lying above 
unstable fluid. If the stable layer were very thick we should expect the convection 
to penetrate only a small distance into the stable layer, so that the vertical 
velocity would be reduced to zero at some point within the layer. We investigate 
the presence or absence of this zero by calculating the values of Dwl, and Dwl, 
in the case of free boundaries, and D2w I , and D2w I in the case of rigid boundaries, 
to see whether or not Dw or D2w change sign within the layer. 

6. Heat generated within the fluid 

(2.23) we have 
If heat is generated within the fluid Q will be replaced by - Q, and instead of 

(O2-a2)3w = -(R-Q(1-2[))aZw. (6.1) 
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The boundary conditions remain the same, (3.4) or (4.4). The substitution 
6 = 1 - 7 transforms (6.1) to 

(D2-  a2)3w = - ( R  + Q( 1 - 27))a2wY (6.2) 

where now D = 8/87. This is the same as (2.23). Applying 6 = 1 - 7 to the boun- 
dary conditions (3.4) or (4.4) simply interchanges the conditions a t  the upper and 
lower boundaries, and, since these are the same, the boundary conditions do not 
change under this transformation. Hence the two problems are identical under 
the transformation 6 = 1 - 7. 

Support for this argument is obtained from the secular equation. In  the 
algebraic approximations used, Q appears in even powers only, so the same 
result is obtained for the critical value of R regardless of the sign of Q. 

7. Results 
Figure 2 shows the behaviour of Rcrit and a with Q in both the cases con- 

sidered. The figures for .n = 2 , 3 , 4  and 5 are given in tables 1 and 2. We see that 
in both cases as Q increases RCrit decreases; i.e. the layer becomes less stable. 

6 -  

5 -  

7 4 -  
0 

X 
w 

3 

3 
- 

30 

29 

2.8 

12.7 a 
2 6  

2 5  

2 4  

2 3  

Q x 10-3 
( b )  

FIGURE 2.  Variation of Rcrit and a with &, (a) for rigid boundaries, ( b )  for free boundaries. 

This agrees with Ray & Scorer, but, whereas they found a linear dependence of 
Rcrit on Q ,  we h d ,  as was mentioned in (6), that Rcrit depends on even powers 
of Q only, and so on Q2 at least. It should be noted that the Rayleigh number 
used here is based on the temperature difference between the top and bottom 
of the layer, and so gives no measure of the actual temperature gradients with- 
in the layer unless Q is small. To obtain a measure of these gradients we must 
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use a parameter based on the difference between the minimum temperature in 
the fluid and the temperature at one of the boundaries (Debler 1965; Sparrow 
et al. 1964). 

We note that for small Q the critical Rayleigh number is very little different 
from its value a t  Q = 0,  and does not begin to depart radically from this value 
until Q and R are of comparable magnitudes. This is to be expected, since, for 

Q 
0 

500 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

I 

n = 2  

657.5 
655-6 
649-9 
626.7 
586.9 
529.0 
451.1 
351-5 
229.2 

85.5 

%it 
A 

n = 3  

657.5 
655.6 
649.9 
626.7 
586.9 
528.9 
450.7 
350.5 
227.3 

81.0 

Q 
0 

500 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

n = 2  

2.22 
2.22 
2-23 
2.28 
2.34 
2.44 
2-56 
2.70 
2.83 
2.95 

a 
A 

n = 3  

2.22 
2.22 
2.23 
2.28 
2.34 
2.44 
2.56 
2.70 
2.83 
2.97 

R = O  

-? 

n = 4  

657.5 
655.6 
649.9 
626.7 
586.9 
528.8 
450.6 
350-4 
227.2 
80.9 

n = 4  

2.22 
2.22 
2.23 
2.28 
2.34 
2.44 
2-56 
2-70 
2.83 
2.97 

n = 2  n = 3  n = 4  

Q 8533 8497 8496 
a 3.02 3-03 3.03 

TABLE 1. Selection of results showing variation of 
Rcrit and a with Q when the boundaries are free 

Q < R, no minimum of temperature occurs within the layer, and the tempera- 
ture gradients are little different from those in the linear case. When Q > R, 
however, a temperature minimum occurs within the layer, so that there may be 
very large temperature gradients. 

Turning our attention to the behaviour of the aspect ratio a as Q increases, 
we see that it is very much the same in both cases. The aspect ratio has increased 
by about 30 yo when R is zero. This corresponds to a decrease in the horizontal 
dimensions of the cells. 
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In  figure 3, the vertical velocity w is plotted, with the maximum being taken 
to be unity for all values of Q. There is no means of finding the absolute magnitude 
of w in this case since the equations allow an arbitrary constant multiplier. 
We see, however, that as Q increases the maximum vertical velocity occurs at a 
smaller value of 5, i.e. lower in the layer. This means that the centre of circulation 

(4 

Q 
0 

1,000 
2,000 
4,000 
6,000 
8,000 
10,000 
12,000 
14,000 
16,000 
18,000 

Q 
0 

1,000 
2,000 
4,000 
6,000 
8,000 
10,000 
12,000 
14,000 
16,000 
18,000 

RC,lt 
r , 
n = 2  n = 3  m = 4  m = 5  
1715.0 1707.9 1707.9 1707-8 
1710.5 1703.5 1703.5 1703.3 
1696.8 1690.2 1690.1 1689.9 
1641.6 1636.7 1636.1 1636.0 
1548.1 1546.1 1544.7 1544-5 
1414.2 1416.3 1413-9 1413.6 
1238.2 1245.3 1241.6 1241-4 
1019.1 1031.6 1026-3 1026.2 
756.9 774.6 767.5 767.6 
453.6 475.0 466.3 466.7 
112.1 134.7 124-4 125.5 

I 

n = 2  
3.1 1 
3.12 
3.13 
3.17 
3.25 
3.34 
3.46 
3-59 
3.72 
3.84 
3.96 

a 

n = 3  
3.116 
3.120 
3.130 
3.173 
3.242 
3.337 
3-451 
3.577 
3.710 
3.838 
3.959 

R = O  

n = 4  
3.116 
3.120 
3.130 
3.173 
3.243 
3.337 
3.454 
3.581 
3-712 
3-840 
3.959 

- 
n = 5  
3.116 
3.120 
3.130 
3.173 
3-243 
3.338 
3.454 
3.581 
3.712 
3.840 
3.959 

Q 
a 

n = 2  n = 3  .n=4 n = 5  
1861.5 1873.4 1867.7 1867.4 
3.989 4.001 3.998 4.000 

TABLE 2. Selection of results showing variation of Rcrlt and 
a with Q when the boundaries are rigid 

in the cell is nearer the lower surface for large Q. This is to be expected since the 
presence of stable fluid at the top of the layer will tend to decrease all velocities 
near the upper boundary. As a result of this decrease in velocity, less work is 
done by the buoyancy forces, and consequently less energy is available to drive 
the flow against viscosity, so the cell diameter becomes smaller, in agreement 
with the above result for a. From table 3 we see that, when the boundaries are 
rigid, D2w changes sign an even number of times within the layer for all values 
of &, implying that w has an odd number of stationary points in the layer. Since 
when Q = 0 there is only one stationary point, a maximum, and since the ratio 
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1.0 

09 

08 

07 

06 

05 

04 

03 

02 

01 

0 01 02 03 04 05 06 07 08 09 1.0 (6) 

6 
FIGURE 3. Normalized vertical velocity profile for selected values of Q, (a) for rigid 

boundaries, (6) for free boundaries. 

Q 
0 

2,000 
4,000 
6,000 
8,000 

10,000 
12,000 
14,000 
16,000 
18,000 

DZWIo 
16.8 
18.0 
19.5 
21-4 
23.7 
26.4 
29-4 
32.7 
35.2 
40.6 

D2WI1 
16-8 
15.6 
14.6 
13.7 
12.8 
11.8 
10-6 
9.4 
8.2 
6-3 

D2w I 1 P 2 W  lo 
1 
0.87 
0.75 
0.64 
0.54 
0.44 
0-36 
0.29 
0.23 
0.15 

TABLE 3. Variation of DZw(,, D2wI, and the ratio 
D 2 w ~ , / D Z w ~ ,  with Q when the boundaries are rigid 

D2wJl/DawI, decreases steadily as Q increases, we conclude that there is only one 
stationary point for all Q such that R > 0. 
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Table 4 shows that Dw changes sign an odd number of times in the layer with 
free boundaries, so again there is an odd number of stationary points in the layer 
and, since the ratio - Dw I ,/Dw lo decreases as Q increases, we again conclude that 
there is a single stationary point in the layer. 

Q 
0 

1000 
2000 
3000 
4000 
5000 
5000 
7000 
8000 

& I 0  

3-14 
1.3 
0.86 
0.66 
0.55 
0.49 
0.45 
0.43 
0.42 

D W l l  

- 3.14 
- 1.2 
- 0.72 
- 0.5 
- 0.38 
- 0.29 
- 0.24 
-0.19 
- 0.16 

- D W I l / ~ l O  

1 
0.92 
0.84 
0-76 
0-68 
0.6 
0.52 
0.45 
0.38 

TABLE 4. Variation of DwJ,, Dw(,  and the ratio 
- Dw I JDw I , with Q when the boundaries are free 

In  both cases there is no zero of the vertical velocity in the layer, so we haye a 
single-cell circulation. This agrees with the result of Debler (1965) for rigid 
boundaries, that a double cell does not appear until 7 > 0.546, where q represents 
the height of the temperature maximum above the lower surface of the fluid. In  
our case, 7 corresponds to the depth of the temperature minimum below the 
upper surface of the fluid, and is in no case greater than 0.5. We can obtain an 
estimate of the value of Q for which D ~ w ,  or Dw, vanishes at Rcrlt, which will 
in this case be negative. We therefore conclude that if Q is less than this value 
(12,000, 32,000 for free and rigid boundaries respectively) there will be no double 
cells. 

Comparing the two problems we see that the overall behaviour is very similar : 
the boundary conditions affect only the magnitudes of the critical Rayleigh 
number and the aspect ratio, and their effects on the vertical velocity profile 
are mainly confined to the parts of the layer near the boundaries. 

The author is greatly indebted to Prof. R. S. Scorer for his helpful suggestions 
and discussions during the course of this work, which was carried out while the 
author was in receipt of a University of London Postgraduate Studentship. 
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